Genetically engineered pigs manifesting pancreatic agenesis with severe diabetes

Author:

Nagaya MasakiORCID,Hasegawa Koki,Watanabe Masahito,Nakano Kazuaki,Okamoto Kazutoshi,Yamada Takeshi,Uchikura Ayuko,Osafune Kenji,Yokota Harumasa,Nagaoka Taiji,Matsunari Hitomi,Umeyama Kazuhiro,Kobayashi Eiji,Nakauchi Hiromitsu,Nagashima Hiroshi

Abstract

IntroductionPancreatic duodenum homeobox 1 (Pdx1) expression is crucial for pancreatic organogenesis and is a key regulator of insulin gene expression. Hairy and enhancer of split 1 (Hes1) controls tissue morphogenesis by maintaining undifferentiated cells. Hes1 encodes a basic helix loop helix (bHLH) transcriptional repressor and functionally antagonizes positive bHLH genes, such as the endocrine determination gene neurogenin-3. Here, we generated a new pig model for diabetes by genetic engineering Pdx1 and Hes1 genes.Research design and methodsA transgenic (Tg) chimera pig with germ cells carrying a construct expressing Hes1 under the control of the Pdx1 promoter was used to mate with wild-type gilts to obtain Tg piglets.ResultsThe Tg pigs showed perinatal death; however, this phenotype could be rescued by insulin treatment. The duodenal and splenic lobes of the Tg pigs were slender and did not fully develop, whereas the connective lobe was absent. β cells were not detected, even in the adult pancreas, although other endocrine cells were detected, and exocrine cells functioned normally. The pigs showed no irregularities in any organs, except diabetes-associated pathological alterations, such as retinopathy and renal damage.ConclusionPdx1-Hes1 Tg pigs were an attractive model for the analysis of pancreatic development and testing of novel treatment strategies for diabetes.

Funder

Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan

Publisher

BMJ

Subject

Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3