Abstract
IntroductionPre-eclampsia (PE) is increased ~4-fold by maternal diabetes. Elevated plasma antiangiogenic factors, soluble fms-like tyrosine kinase (sFLT-1) and soluble endoglin (sENG), precede PE onset. We investigated whether diabetes-related stresses, modified lipoproteins and elevated glucose enhance trophoblast sFLT-1 and sENG release and/or alter placental barrier function and whether oxidized low-density lipoprotein (Ox-LDL) is in placental tissue.Research design and methodsHTR8/SVneo cells were exposed to ‘heavily-oxidized, glycated’ LDL (HOG-LDL) versus native LDL (N-LDL) (10–200 mg protein/L) for 24 hours ±pretreatment with glucose (30 mmol/L, 72 hours). Concentrations of sFLT-1 and sENG in supernatants (by ELISA) and expressions of sFLT-1-I13 and sFLT-1-E15A isoforms, endoglin (ENG) and matrix metalloproteinase-14 (MMP-14; by RT-PCR) were quantified. For barrier studies, JAR cells were cultured in Transwell plates (12–14 days), then exposed to LDL. Transepithelial electrical resistance (TEER) was measured after 6, 12 and 24 hours. In placental sections from women with and without type 1 diabetes, immunostaining of apolipoprotein B100 (ApoB, a marker of LDL), Ox-LDL and lipoxidation product 4-hydroxynonenal was performed.ResultsHOG-LDL (50 mg/L) increased sFLT-1 (2.7-fold, p<0.01) and sENG (6.4-fold, p<0.001) in supernatants versus N-LDL. HOG-LDL increased expression of sFLT-1-I13 (twofold, p<0.05), sFLT-1-E15A (1.9-fold, p<0.05), ENG (1.6-fold, p<0.01) and MMP-14 (1.8-fold, p<0.05) versus N-LDL. High glucose did not by itself alter sFLT-1 or sENG concentrations, but potentiated effects of HOG-LDL on sFLT-1 by 1.5-fold (p<0.05) and on sENG by 1.8-fold (p<0.01). HOG-LDL (200 mg/L) induced trophoblast barrier impairment, decreasing TEER at 6 hours (p<0.01), 12 hours (p<0.01) and 24 hours (p<0.05) versus N-LDL. Immunostaining of term placental samples from women both with and without diabetes revealed presence of intravillous modified lipoproteins.ConclusionThese findings may explain, in part, the high risk for PE in women with diabetes. The trophoblast culture model has potential for evaluating novel therapies targeting barrier dysfunction.
Subject
Endocrinology, Diabetes and Metabolism
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献