Abstract
IntroductionWe evaluated whether concentrations of serum acylcarnitines and amino acids are associated with risk of type 2 diabetes and can improve predictive diabetes models in an Asian population.Research design and methodsWe used data from 3313 male and female participants from the Singapore Prospective Study Program cohort who were diabetes-free at baseline. The average age at baseline was 48.0 years (SD: 11.9 years), and participants were of Chinese, Malay, and Indian ethnicity. Diabetes cases were identified through self-reported physician diagnosis, fasting glucose and glycated hemoglobin concentrations, and linkage to national disease registries. We measured fasting serum concentrations of 45 acylcarnitines and 14 amino acids. The association between metabolites and incident diabetes was modeled using Cox proportional hazards regression with adjustment for age, sex, ethnicity, height, and parental history of diabetes, and correction for multiple testing. Metabolites were added to the Atherosclerosis Risk in Communities (ARIC) predictive diabetes risk model to assess whether they could increase the area under the receiver operating characteristic curve (AUC).ResultsParticipants were followed up for an average of 8.4 years (SD: 2.1 years), during which time 314 developed diabetes. Branched-chain amino acids (HR: 1.477 per SD; 95% CI 1.325 to 1.647) and the alanine to glycine ratio (HR: 1.572; 95% CI 1.426 to 1.733) were most strongly associated with diabetes risk. Additionally, the acylcarnitines C4 and C16-OH, and the amino acids alanine, combined glutamate/glutamine, ornithine, phenylalanine, proline, and tyrosine were significantly associated with higher diabetes risk, and the acylcarnitine C8-DC and amino acids glycine and serine with lower risk. Adding selected metabolites to the ARIC model resulted in a significant increase in AUC from 0.836 to 0.846.ConclusionsWe identified acylcarnitines and amino acids associated with risk of type 2 diabetes in an Asian population. A subset of these modestly improved the prediction of diabetes when added to an established diabetes risk model.
Funder
National Research Foundation Singapore
Singapore Biomedical Research Council
National Medical Research Council
Subject
Endocrinology, Diabetes and Metabolism
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献