Should insulin resistance (HOMA-IR), insulin secretion (HOMA-β), and visceral fat area be considered for improving the performance of diabetes risk prediction models

Author:

Hu HuanORCID,Nakagawa Tohru,Honda Toru,Yamamoto Shuichiro,Mizoue Tetsuya

Abstract

IntroductionInsulin resistance and defects in pancreatic beta cells are the two major pathophysiologic abnormalities that underlie type 2 diabetes. In addition, visceral fat area (VFA) is reported to be a stronger predictor for diabetes than body mass index (BMI). Here, we tested whether the performance of diabetes prediction models could be improved by adding HOMA-IR and HOMA-β and replacing BMI with VFA.Research design and methodsWe developed five prediction models using data from a cohort study (5578 individuals, of whom 94.7% were male, and 943 had incident diabetes). We conducted a baseline model (model 1) including age, sex, BMI, smoking, dyslipidemia, hypertension, and HbA1c. Subsequently, we developed another four models: model 2, predictors in model 1 plus fasting plasma glucose (FPG); model 3, predictors in model 1 plus HOMA-IR and HOMA-β; model 4, predictors in model 1 plus FPG, HOMA-IR, and HOMA-β; model 5, replaced BMI with VFA in model 2. We assessed model discrimination and calibration for the first 10 years of follow-up.ResultsThe addition of FPG to model 1 obviously increased the value of the area under the receiver operating characteristic curve from 0.79 (95% CI 0.78, 0.81) to 0.84 (0.83, 0.85). Compared with model 1, model 2 also significantly improved the risk reclassification and discrimination, with a continuous net reclassification improvement index of 0.61 (0.56, 0.70) and an integrated discrimination improvement index of 0.09 (0.08, 0.10). Adding HOMA-IR and HOMA-β (models 3 and 4) or replacing BMI with VFA (model 5) did not further materially improve the performance.ConclusionsThis cohort study, primarily composed of male workers, suggests that a model with BMI, FPG, and HbA1c effectively identifies those at high diabetes risk. However, adding HOMA-IR, HOMA-β, or replacing BMI with VFA does not significantly improve the model. Further studies are needed to confirm our findings.

Funder

the Japan Society for the Promotion of Science KAKENHI

National Center for Global Health and Medicine

the Industrial Health Foundation

Publisher

BMJ

Reference22 articles.

1. International Diabetes Federation . Brussels, Belgium; IDF Diabetes Atlas, . 2021 Available: https://www.diabetesatlas.org [Accessed 13 Aug 2022].

2. Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting;Collins;BMC Med,2011

3. Development and validation of risk models to predict the 7-year risk of type 2 diabetes: the Japan epidemiology collaboration on occupational health study;Hu;J Diabetes Investig,2018

4. Simultaneous consideration of Hba1C and insulin resistance improves risk assessment in white individuals at increased risk for future type 2 diabetes;Meigs;Diabetes,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3