Analysis of the physical and microbiocidal characteristics of an emerging and innovative UV disinfection technology

Author:

Messina Gabriele,Amodeo Davide,Corazza Alessio,Nante Nicola,Cevenini Gabriele

Abstract

IntroductionSurface disinfection is one of the key points to reduce the risk of transmission both in healthcare and other public spaces. A novel UV-chip disinfection technology is presented. Technological, photonic and microbiocidal characteristics are evaluated taking as reference an ultraviolet-C (UV-C) LED source of equivalent radiant power.MethodsThe UV chip has a circular radiating surface with a diameter of 1.3 cm, emitting UV cold light at about 5 mW and driven current of about 80 µA. Four bacterial strains were used to conduct the microbiological tests at 4°C and 60°C to evaluate the bactericidal performance of the two technologies under the same operating conditions.ResultsSpectral differences were found between the UV-C LED and the chip, with an emission curve strictly around 280 nm and a broader band centred around 264 nm, respectively. Between-technology microbiological inactivation levels were comparable, achieving total abatement (99.999%) in 8 min at 7.5 cm.DiscussionThe UV chip exhibits unique properties that make it applicable in some specific contexts, where UV-C LEDs present the most critical issues. Besides, it is portable and exhibits a broad spectrum of UV wavelengths with a peak where the maximum microbiocidal efficacy occurs. Important issues to be addressed to improve this technology are the high voltage management and the too low energy efficiency.ConclusionThis cold emission technology is virtually unaffected by changes in ambient temperature and is particularly useful in short-distance applications. Recent developments in technology are moving towards a progressive increase in the chip’s radiant power.

Publisher

BMJ

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3