Inframe deletion of human ESPN is associated with deafness, vestibulopathy and vision impairment

Author:

Ahmed Zubair M,Jaworek Thomas J,Sarangdhar Gowri N,Zheng Lili,Gul Khitab,Khan Shaheen N,Friedman Thomas B,Sisk Robert A,Bartles James R,Riazuddin Sheikh,Riazuddin Saima

Abstract

BackgroundUsher syndrome (USH) is a neurosensory disorder characterised by deafness, variable vestibular areflexia and vision loss. The aim of the study was to identify the genetic defect in a Pakistani family (PKDF1051) segregating USH.MethodsGenome-wide linkage analysis was performed by using an Illumina linkage array followed by Sanger and exome sequencing. Heterologous cells and mouse organ of Corti explant-based transfection assays were used for functional evaluations. Detailed clinical evaluations were performed to characterise the USH phenotype.ResultsThrough homozygosity mapping, we genetically linked the USH phenotype segregating in family PKDF1051 to markers on chromosome 1p36.32-p36.22. The locus was designated USH1M. Using a combination of Sanger sequencing and exome sequencing, we identified a novel homozygous 18 base pair inframe deletion in ESPN. Variants of ESPN, encoding the actin-bundling protein espin, have been previously associated with deafness and vestibular areflexia in humans with no apparent visual deficits. Our functional studies in heterologous cells and in mouse organ of Corti explant cultures revealed that the six deleted residues in affected individuals of family PKDF1051 are essential for the actin bundling function of espin demonstrated by ultracentrifugation actin binding and bundling assays. Funduscopic examination of the affected individuals of family PKDF1051 revealed irregular retinal contour, temporal flecks and disc pallor in both eyes. ERG revealed diminished rod photoreceptor function among affected individuals.ConclusionOur study uncovers an additional USH gene, assigns the USH1 phenotype to a variant of ESPN and provides a 12th molecular component to the USH proteome.

Funder

National Institute on Deafness and Other Communication Disorders

Publisher

BMJ

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3