Two patients with MIRAGE syndrome lacking haematological features: role of somatic second-site reversion SAMD9 mutations

Author:

Shima Hirohito,Koehler Katrin,Nomura Yumiko,Sugimoto Kazuhiko,Satoh Akira,Ogata Tsutomu,Fukami Maki,Jühlen Ramona,Schuelke Markus,Mohnike Klaus,Huebner Angela,Narumi Satoshi

Abstract

BackgroundMyelodysplasia, infection, restriction of growth, adrenal hypoplasia, genital phenotypes and enteropathy (MIRAGE) syndrome is a recently described congenital disorder caused by heterozygous SAMD9 mutations. The phenotypic spectrum of the syndrome remains to be elucidated.Methods and resultsWe describe two unrelated patients who showed manifestations compatible with MIRAGE syndrome, with the exception of haematological features. Leucocyte genomic DNA samples were analysed with next-generation sequencing and Sanger sequencing, revealing the patients to have two de novoSAMD9 mutations on the same allele (patient 1 p.[Gln695*; Ala722Glu] and patient 2 p.[Gln39*; Asp769Gly]). In patient 1, p.Gln695* was absent in genomic DNA extracted from hair follicles, implying that the non-sense mutation was acquired somatically. In patient 2, with the 46,XX karyotype, skewed X chromosome inactivation pattern was found in leucocyte DNA, suggesting monoclonality of cells in the haematopoietic system. In vitro expression experiments confirmed the growth-restricting capacity of the two missense mutant SAMD9 proteins that is a characteristic of MIRAGE-associated SAMD9 mutations.ConclusionsAcquisition of a somatic nonsense SAMD9 mutation in the cells of the haematopoietic system might revert the cellular growth repression caused by the germline SAMD9 mutations (ie, second-site reversion mutations). Unexpected lack of haematological features in the two patients would be explained by the reversion mutations.

Funder

Takeda Science Foundation

Ministry of Education, Culture, Sports, Science and Technology

Deutsche Forschungsgemeinschaft

Japan Agency for Medical Research and Development

Japan Intractable Diseases (Nanbyo) Research Foundation

Publisher

BMJ

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3