Abstract
PurposeThe contribution of rare genetic variation in the development of soft-tissue sarcoma (STS) remains underexplored. To address this gap, we conducted a whole-exome case-control and somatic-germline interaction study to identify and characterise STS susceptible genes.MethodsThe study involved 219 STS cases from The Cancer Genome Atlas and 3507 controls. All cases and controls were matched genetically onEuropean ancestry based on the 1000 Genomes project. Cross-platform technological stratification was performed with XPAT and gene-based association tests with VAAST 2.ResultsNF1 exhibited the strongest genome-wide signal across the six subtypes, with p=1×10−5. We also observed nominally significant association signals for three additional genes of interest, TP53 (p=0.0025), RB1 (p=0.0281), and MSH2 (p=0.0085). BAG1, which has not previously been implicated in STS, exhibited the strongest genome-wide signal after NF1, with p=6×10−5. The association signals for NF1 and MSH2 were driven primarily by truncating variants, with ORs of 39 (95% CI: 7.1 to 220) for NF1 and 33 (95% CI: 2.4 to 460) for MSH2. In contrast, the association signals for RB1 and BAG1 were driven primarily by predicted damaging missense variants, with estimated ORs of 12 (95% CI: 2.4 to 59) for RB1 and 20 (95% CI: 1.4 to 300) for BAG1.ConclusionsOur results confirm that pathogenic variants in NF1, RB1 and TP53 confer large increases in the risk of developing multiple STS subtypes, provide support for the role of MSH2 in STS susceptibility and identify BAG1 as a novel candidate STS risk gene.
Funder
US National Cancer Institutes Cancer Center Support Grant
US National Institutes of Health grants
Subject
Genetics (clinical),Genetics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献