Clinical exome sequencing as the first-tier test for diagnosing developmental disorders covering both CNV and SNV: a Chinese cohort

Author:

Dong Xinran,Liu Bo,Yang LinORCID,Wang HuijunORCID,Wu Bingbing,Liu Renchao,Chen Hongbo,Chen Xiang,Yu Sha,Chen Bin,Wang Sujuan,Xu Xiu,Zhou Wenhao,Lu YulanORCID

Abstract

BackgroundDevelopmental disorders (DDs) are early onset disorders affecting 5%–10% of children worldwide. Chromosomal microarray analysis detecting CNVs is currently recommended as the first-tier test for DD diagnosis. However, this analysis omits a high percentage of disease-causing single nucleotide variations (SNVs) that warrant further sequencing. Currently, next-generation sequencing can be used in clinical scenarios detecting CNVs, and the use of exome sequencing in the DD cohort ahead of the microarray test has not been evaluated.MethodsClinical exome sequencing (CES) was performed on 1090 unrelated Chinese DD patients who were classified into five phenotype subgroups. CNVs and SNVs were both detected and analysed based on sequencing data.ResultsAn overall diagnostic rate of 41.38% was achieved with the combinational analysis of CNV and SNV. Over 12.02% of patients were diagnosed based on CNV, which was comparable with the published CMA diagnostic rate, while 0.74% were traditionally elusive cases who had dual diagnosis or apparently homozygous mutations that were clarified. The diagnostic rates among subgroups ranged from 21.82% to 50.32%. The top three recurrent cytobands with diagnostic CNVs were 15q11.2-q13.1, 22q11.21 and 7q11.23. The top three genes with diagnostic SNVs were: MECP2, SCN1A and SCN2A. Both the diagnostic rate and spectrums of CNVs and SNVs showed differences among the phenotype subgroups.ConclusionWith a higher diagnostic rate, more comprehensive observation of variations and lower cost compared with conventional strategies, simultaneous analysis of CNVs and SNVs based on CES showed potential as a new first-tier choice to diagnose DD.

Funder

Research projects of the Shanghai municipal health and family planning committee

National Key Research and Development Program

Shanghai Sailing Program

Science and Technology Commission of Shanghai Municipality

Shanghai Hospital Development Center

Shanghai Key Laboratory of Birth Defects

National Natural Science Foundation of China

Publisher

BMJ

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3