Abstract
BackgroundThe HERC2 gene encodes a 527 kDa E3 ubiquitin protein ligase that has key roles in cell cycle regulation, spindle formation during mitosis, mitochondrial functions and DNA damage responses. It has essential roles during embryonic development, particularly for neuronal and muscular functions. To date, missense mutations in HERC2 have been associated with an autosomal recessive neurodevelopmental disorder with some phenotypical similarities to Angelman syndrome, and a homozygous deletion spanning HERC2 and OCA2 causing a more severe neurodevelopmental phenotype.Methods and resultsWe ascertained a consanguineous family with a presumed autosomal recessive severe neurodevelopmental disorder that leads to paediatric lethality. In affected individuals, we identified a homozygous HERC2 frameshift variant that results in a premature stop codon and complete loss of HERC2 protein. Functional characterisation of this variant in fibroblasts, from one living affected individual, revealed impaired mitochondrial network and function as well as disrupted levels of known interacting proteins such as XPA.ConclusionThis study extends the genotype–phenotype correlation for HERC2 variants to include a distinct lethal neurodevelopmental disorder, highlighting the importance of further characterisation for HERC2-related disorders.
Funder
British Heart Foundation
Sir Jules Thorn Award for Biomedical Research
Wellcome Trust
Subject
Genetics (clinical),Genetics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献