Identifying the molecular drivers of ALS-implicated missense mutations

Author:

Portelli Stephanie,Albanaz Amanda,Pires Douglas Eduardo ValenteORCID,Ascher David BenjaminORCID

Abstract

BackgroundAmyotrophic lateral sclerosis (ALS) is a progressively fatal, neurodegenerative disease associated with both motor and non-motor symptoms, including frontotemporal dementia. Approximately 10% of cases are genetically inherited (familial ALS), while the majority are sporadic. Mutations across a wide range of genes have been associated; however, the underlying molecular effects of these mutations and their relation to phenotypes remain poorly explored.MethodsWe initially curated an extensive list (n=1343) of missense mutations identified in the clinical literature, which spanned across 111 unique genes. Of these, mutations in genesSOD1,FUSandTDP43were analysed using in silico biophysical tools, which characterised changes in protein stability, interactions, localisation and function. The effects of pathogenic and non-pathogenic mutations within these genes were statistically compared to highlight underlying molecular drivers.ResultsCompared with previous ALS-dedicated databases, we have curated the most extensive missense mutation database to date and observed a twofold increase in unique implicated genes, and almost a threefold increase in the number of mutations. Our gene-specific analysis identified distinct molecular drivers across the different proteins, where SOD1 mutations primarily reduced protein stability and dimer formation, and those in FUS and TDP-43 were present within disordered regions, suggesting different mechanisms of aggregate formation.ConclusionUsing our three genes as case studies, we identified distinct insights which can drive further research to better understand ALS. The information curated in our database can serve as a resource for similar gene-specific analyses, further improving the current understanding of disease, crucial for the development of treatment strategies.

Funder

Victorian Government

National Health and Medical Research Council (NHMRC) of Australia

Publisher

BMJ

Subject

Genetics (clinical),Genetics

Reference49 articles.

1. Amyotrophic lateral sclerosis;Hardiman;Nat Rev Dis Primers,2017

2. Therapy of amyotrophic lateral sclerosis remains a challenge;van den Berg;Lancet Neurol,2014

3. Als clinical trials review: 20 years of failure. are we any closer to Registering a new treatment?;Petrov;Front Aging Neurosci,2017

4. Genetics of sporadic amyotrophic lateral sclerosis;Schymick;Hum Mol Genet,2007

5. Potential environmental factors in amyotrophic lateral sclerosis;Oskarsson;Neurol Clin,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3