Parental mosaicism detection and preimplantation genetic testing in families with multiple transmissions of de novo mutations

Author:

Xu Naixin,Shi Weihui,Cao Xianling,Zhou Xuanyou,Jin Li,Huang He-Feng,Chen Songchang,Xu ChenmingORCID

Abstract

BackgroundDe novo mutations (DNMs) are linked with many severe early-onset disorders ranging from rare congenital malformation to intellectual disability. Conventionally, DNMs are considered to have an estimated recurrence rate of 1%. Recently, studies have revealed a higher prevalence of parental mosaicism, leading to a greater recurrence risk, resulting in a second child harbouring the same DNM as a previous child.MethodsIn this study, we included 10 families with DNMs leading to adverse pregnancy outcomes. DNA was extracted from tissue samples, including parental peripheral blood, parental saliva and paternal sperm. High-throughput sequencing was used to screen for parental mosaicism with a depth of more than 5000× on average and a variant allele fraction (VAF) detection limit of 0.5%.ResultsThe presence of mosaicism was detected in sperms in two families, with VAFs of 2.8% and 2.5%, respectively. Both families have a history of multiple adverse pregnancies and DNMs shared by siblings. Preimplantation genetic testing (PGT) and prenatal diagnosis were performed in one family, thereby preventing the reoccurrence of DNMs.ConclusionThis study is the first to report the successful implementation of PGT for monogenic/single gene defects in the parental mosaicism family. Our study suggests that mosaic detection of paternal sperm is warranted in families with recurrent DNMs leading to adverse pregnancy outcomes, and PGT can effectively block the transmission of the pathogenic mutation.

Funder

Key R&D Program of China

Collaborative Innovation Program of Shanghai Municipal Health

CAMS

Research Base

SHDC

Shanghai Municipal Commission of Science and Technology

National Natural Science Foundation of China

Shanghai Municipal Commission of Health

Shanghai Municipal Health Commission

Publisher

BMJ

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3