Abstract
BackgroundSpliceogenic variants in disease-causing genes are often presumed pathogenic since most induce frameshifts resulting in loss of function. However, it was recently shown in cancer predisposition genes that some may trigger in-frame anomalies that preserve function. Here, we addressed this question by usingMSH2, a DNA mismatch repair gene implicated in Lynch syndrome, as a model system.MethodsEighteenMSH2variants, mostly localised within canonical splice sites, were analysed by using minigene splicing assays. The impact of the resulting protein alterations was assessed in a methylation tolerance-based assay. Clinicopathological characteristics of variant carriers were collected.ResultsThree in-frame RNA biotypes were identified based on variant-induced spliceogenic outcomes: exon skipping (E3, E4, E5 and E12), segmental exonic deletions (E7 and E15) and intronic retentions (I3, I6, I12 and I13). The 10 corresponding protein isoforms exhibit either large deletions (49–93 amino acids (aa)), small deletions (12 or 16 aa) or insertions (3–10 aa) within different functional domains. We showed that all these modifications abrogate MSH2 function, in agreement with the clinicopathological features of variant carriers.ConclusionAltogether, these data demonstrate that MSH2 function is intolerant to in-frame indels caused by the spliceogenic variants analysed in this study, supporting their pathogenic nature. This work stresses the importance of combining complementary RNA and protein approaches to ensure accurate clinical interpretation of in-frame spliceogenic variants.
Funder
Fédération Hospitalo-Universitaire (FHU) Normandy Centre for Genomic and Personalized Medicine
the French National Cancer Institute and the Direction Generale de l’Offre des Soins
Groupement des Entreprises Françaises dans la Lutte contre le Cancer
Subject
Genetics (clinical),Genetics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献