Development and validation of a prediction model for fat mass in children and adolescents: meta-analysis using individual participant data

Author:

Hudda Mohammed T,Fewtrell Mary S,Haroun Dalia,Lum Sooky,Williams Jane E,Wells Jonathan C K,Riley Richard D,Owen Christopher G,Cook Derek G,Rudnicka Alicja R,Whincup Peter H,Nightingale Claire MORCID

Abstract

Abstract Objectives To develop and validate a prediction model for fat mass in children aged 4-15 years using routinely available risk factors of height, weight, and demographic information without the need for more complex forms of assessment. Design Individual participant data meta-analysis. Setting Four population based cross sectional studies and a fifth study for external validation, United Kingdom. Participants A pooled derivation dataset (four studies) of 2375 children and an external validation dataset of 176 children with complete data on anthropometric measurements and deuterium dilution assessments of fat mass. Main outcome measure Multivariable linear regression analysis, using backwards selection for inclusion of predictor variables and allowing non-linear relations, was used to develop a prediction model for fat-free mass (and subsequently fat mass by subtracting resulting estimates from weight) based on the four studies. Internal validation and then internal-external cross validation were used to examine overfitting and generalisability of the model’s predictive performance within the four development studies; external validation followed using the fifth dataset. Results Model derivation was based on a multi-ethnic population of 2375 children (47.8% boys, n=1136) aged 4-15 years. The final model containing predictor variables of height, weight, age, sex, and ethnicity had extremely high predictive ability (optimism adjusted R 2 : 94.8%, 95% confidence interval 94.4% to 95.2%) with excellent calibration of observed and predicted values. The internal validation showed minimal overfitting and good model generalisability, with excellent calibration and predictive performance. External validation in 176 children aged 11-12 years showed promising generalisability of the model (R 2 : 90.0%, 95% confidence interval 87.2% to 92.8%) with good calibration of observed and predicted fat mass (slope: 1.02, 95% confidence interval 0.97 to 1.07). The mean difference between observed and predicted fat mass was −1.29 kg (95% confidence interval −1.62 to −0.96 kg). Conclusion The developed model accurately predicted levels of fat mass in children aged 4-15 years. The prediction model is based on simple anthropometric measures without the need for more complex forms of assessment and could improve the accuracy of assessments for body fatness in children (compared with those provided by body mass index) for effective surveillance, prevention, and management of clinical and public health obesity.

Publisher

BMJ

Subject

General Engineering

Reference51 articles.

1. World Health Organization. Childhood overweight and obesity 2014 www.who.int/dietphysicalactivity/childhood/en/ Accessed August 2016.

2. Bridges S, Darton R, Evans-Lacko S, et al. Health Survey for England 2014. In: Craig R, Fuller E, Mindell J, eds, 2015.

3. Establishing a standard definition for child overweight and obesity worldwide: international survey

4. Tracking of obesity and physical activity from childhood to adulthood: The Physical Activity Longitudinal Study

5. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3