Responsibility and decision-making authority in using clinical decision support systems: an empirical-ethical exploration of German prospective professionals’ preferences and concerns

Author:

Funer FlorianORCID,Liedtke WenkeORCID,Tinnemeyer Sara,Klausen Andrea Diana,Schneider DianaORCID,Zacharias Helena U,Langanke Martin,Salloch SabineORCID

Abstract

Machine learning-driven clinical decision support systems (ML-CDSSs) seem impressively promising for future routine and emergency care. However, reflection on their clinical implementation reveals a wide array of ethical challenges. The preferences, concerns and expectations of professional stakeholders remain largely unexplored. Empirical research, however, may help to clarify the conceptual debate and its aspects in terms of their relevance for clinical practice. This study explores, from an ethical point of view, future healthcare professionals’ attitudes to potential changes of responsibility and decision-making authority when using ML-CDSS. Twenty-seven semistructured interviews were conducted with German medical students and nursing trainees. The data were analysed based on qualitative content analysis according to Kuckartz. Interviewees’ reflections are presented under three themes the interviewees describe as closely related: (self-)attribution of responsibility, decision-making authority and need of (professional) experience. The results illustrate the conceptual interconnectedness of professional responsibility and its structural and epistemic preconditions to be able to fulfil clinicians’ responsibility in a meaningful manner. The study also sheds light on the four relata of responsibility understood as a relational concept. The article closes with concrete suggestions for the ethically sound clinical implementation of ML-CDSS.

Funder

Bundesministerium für Bildung und Forschung

Publisher

BMJ

Subject

Health Policy,Arts and Humanities (miscellaneous),Issues, ethics and legal aspects,Health (social science)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3