Sensory nerve conduction studies in probable painful neuropathy: comparing surface and near-nerve nerve conduction techniques

Author:

Bille Margrethe Bastholm,Ballegaard MartinORCID

Abstract

IntroductionWe compared sensory nerve conduction studies (NCS) using surface and near-nerve recording electrodes in 53 patients with clinical probable painful neuropathy. Our aim was to validate the use of both recording techniques in that limited patient group.MethodsPatients had sensory NCS using two established recording methods and quantitative sensory tests (QST). We compared normalised amplitudes of sensory sural nerve action potentials (SNAP) and sensory thresholds and used receiver operated curve (ROC) analysis of absolute SNAP amplitudes to find discriminatory levels predicting abnormal sensory thresholds.ResultsMean sural SNAP z-scores differed depending on recording techniques (surface −1.0: SD 1.9; near-nerve −2.5: SD 1.7) with a numeric mean difference of −1.49 (Bland-Altman test: CI −1.872 to −1.12) with surface technique giving the z-value closest to zero. We documented a significant bias between the methods. Fifteen patients (28.3%) and 30 (56.6%) patients had abnormal results, respectively (χ2 test: p<0.001).Sural SNAP amplitudes correlated significantly with vibration thresholds using the near-nerve (p<0.02) but not using the surface technique (p=0.11).ROC analysis gave an optimal discriminative value of SNAP amplitudes for each QST measure, which were similar to our lower limit of normal values from investigating normal controls using near-nerve but not surface recording.ConclusionIn patients with probable painful neuropathy, choosing sensory NCS technique introduces a bias in the diagnostic outcome. Differences in test performance suggest that using a normal sural NCS alone to delineate small fibre neuropathy from mixed neuropathy could result in poorly defined diagnostic groups.

Publisher

BMJ

Subject

Neurology (clinical),Neurology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3