Discovering themes in medical records of patients with psychogenic non-epileptic seizures

Author:

Lay Joshua,Seneviratne UdayaORCID,Fok Anthony,Roberts Helene,Phan Thanh

Abstract

IntroductionEpileptic and psychogenic non-epileptic seizures (PNES) are common diagnostic problems encountered in hospital practice. This study explores the use of unsupervised machine learning in discovering themes in medical records of patients presenting with PNES. We hypothesised that themes generated by machine learning are comparable with the classification by human experts.MethodsThis is a retrospective analysis of the medical records in the emergency department of patients (age >18 years) with PNES who underwent inpatient video-electroencephalography monitoring from May 2009 to June 2014 and received a final diagnosis of PNES. Prior to machine learning of written text, we applied a standardised approach in natural language processing to create a document-term matrix (removal of numbers, stop-words and punctuations, transforming fonts to lower case). The words were separated into tokens and treated as if existing within a bag-of-words. A probability of each word existing within a topic (theme) was modelled on multivariate Dirichlet distribution (R Foundation, V.3.5.0). Next, we asked four experts to independently provide a clinical interpretation of the generated topics. When the majority of (≥3) experts agreed, it was regarded as highly congruent. Interactive data are available on the web at (https://gntem2.github.io/PNES/%23topic=1&lambda=0.6&term=).ResultsThere were 39 patients (74.4% women, median age 35 years with range 20–82). A total of 121 documents were converted to text files for text mining. There were 15 generated topics with 12/15 topics rated as highly congruent. The main themes were about descriptors of seizures and medication use.ConclusionsThe findings from machine learning on PNES-related documentation provides evidence for the feasibility of applying machine-learning methodology to analyse large volumes of medical records. The topics generated by machine learning were congruent with interpretations by clinicians indicating this method can be used for screening of medical conditions among large volumes of medical records.

Publisher

BMJ

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3