Abstract
BackgroundThe landscape of stroke care has shifted from stand-alone hospitals to cooperative networks among hospitals. Despite the importance of these networks, limited information exists on their characteristics and functional attributes.MethodsWe extracted patient-level data on acute stroke care and hospital connectivity by integrating national stroke audit data with reimbursement claims data. We then used this information to transform interhospital transfers into a network framework, where hospitals were designated as nodes and transfers as edges. Using the Louvain algorithm, we grouped densely connected hospitals into distinct stroke care communities. The quality and characteristics in given stroke communities were analysed, and their distinct types were derived using network parameters. The clinical implications of this network model were also explored.ResultsOver 6 months, 19 113 patients with acute ischaemic stroke initially presented to 1009 hospitals, with 3114 (16.3%) transferred to 246 stroke care hospitals. These connected hospitals formed 93 communities, with a median of 9 hospitals treating a median of 201 patients. Derived communities demonstrated a modularity of 0.904, indicating a strong community structure, highly centralised around one or two hubs. Three distinct types of structures were identified: single-hub (n=60), double-hub (n=22) and hubless systems (n=11). The endovascular treatment rate was highest in double-hub systems, followed by single-hub systems, and was almost zero in hubless systems. The hubless communities were characterised by lower patient volumes, fewer hospitals, no hub hospital and no stroke unit.ConclusionsThis network analysis could quantify the national stroke care system and point out areas where the organisation and functionality of acute stroke care could be improved.
Funder
Korea Centers for Disease Control and Prevention