Spatial-domain low-coherence quantitative phase microscopy to improve the cytological diagnosis of pancreatic cancer

Author:

Ma HongbinORCID,Wang Pin,Shang Dong,Liu Yang

Abstract

Use of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) cytology to detect pancreatic cancer is limited, with a high false negative rate mainly due to the relatively fewer number of completely cancerous cells. To improve the accuracy of EUS-FNA cytological diagnosis, we evaluated a novel optical system—spatial-domain low-coherence quantitative phase microscopy (SL-QPM)—to analyze nanoscale nuclear architecture on original cytology samples, especially those diagnosed as indeterminate for malignancy, with the goal of maintaining high specificity and reducing false positive rate. We performed SL-QPM on original cytology samples obtained by EUS-FNA from 40 patients with suspicious pancreatic solid lesions (27 adenocarcinomas, 5 neuroendocrine tumor, 8 chronic pancreatitis), including 13 cases that were cytologically indeterminate. Each diagnosis had been confirmed by follow-up surgical pathology. The SL-QPM-derived nanoscale nuclear architectural parameters distinguished pancreatic cancer from cytologically indeterminate cells. A logistic regression model using nuclear entropy and SD increased the sensitivity of cytology in identifying pancreatic cancer from 72% to 94% while maintaining 100% specificity. The SL-QPM-derived nanoscale nuclear architecture properties show great promise in improving the cytological diagnosis of EUS-FNA for pancreatic cancer and could be used when traditional cytopathology does not get an accurate diagnosis, and can be easily translated into a traditional clinical device.

Funder

National Natural Science Foundation of China

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3