Clinical and pathogenic significance of S100A4 overexpression in systemic sclerosis

Author:

Denton Christopher PORCID,Xu Shiwen,Zhang Fenge,Maclean Rory H,Clark Kristina E NORCID,Borchert Signe,Hussain Rizwan I,Klingelhöfer Jörg,Hallén Jonas,Ong Voon H

Abstract

ObjectivesWe have studied the damage-associated molecular pattern protein S100A4 as a driver of fibroblast activation in systemic sclerosis (SSc).MethodsS100A4 protein concentration was measured by ELISA in serum of SSc (n=94) and healthy controls (n=15). Protein expression in skin fibroblast cultures from diffuse cutaneous SSc (SScF, n=6) and healthy controls (normal fibroblasts (NF), n=6) was assessed. Recombinant S100A4 and a high affinity anti-S100A4 neutralising monoclonal antibody (AX-202) were tested on SScF and NF.ResultsMedian (range) S100A4 (ng/mL) was higher in serum of SSc (89.9 (15.0–240.0)) than healthy controls (71.4 (7.9–131.8); p=0.027). There was association with SSc-interstitial lung disease (p=0.025, n=55), scleroderma renal crisis (p=0.026, n=4). Median (range) S100A4 (ng/mL) was higher in culture supernatants of SScF (4.19 (0.52–8.42)) than NF controls (0.28 (0.02–3.29); p<0.0001). AX-202 reduced the constitutive profibrotic gene and protein expression phenotype of SScF. Genome-wide RNA sequencing analysis identified an S100A4 activated signature in NF overlapping the hallmark gene expression signature of SScF. Thus, 464 differentially expressed genes (false discovery rate (FDR) <0.001 and fold change (FC) >1.5) induced in NF by S100A4 were also constitutively overexpressed, and downregulated by AX-202, in SScF. Pathway mapping of these S100A4 dependent genes in SSc showed the most significant enriched Kegg pathways (FDR <0.001) were regulation of stem cell pluripotency (4.6-fold) and metabolic pathways (1.9-fold).ConclusionOur findings provide compelling evidence for a profibrotic role for S100A4 in SSc and suggest that serum level may be a biomarker of major organ manifestations and disease severity. This study supports examining the therapeutic potential of targeting S100A4 in SSc.

Funder

Norwegian Research Council

Royal Free Hospital Charity

Arxx Therapeutics

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3