Single-cell transcriptome analysis profiles cellular and molecular alterations in submandibular gland and blood in IgG4-related disease

Author:

Li YanmeiORCID,Wang Zhiqin,Han Feng,Zhang Mei,Yang Tong,Chen MingORCID,Du Jun,Wang Yin,Zhu Li,Hou Hou,Chang Yanxia,Han Lin,Lyu Xing,Zhang Na,Sun Wenwen,Cai ZhigangORCID,Wei Wei

Abstract

ObjectivesThe aim of this study is to profile the transcriptional landscapes of affected tissues and peripheral blood mononuclear cells (PBMCs) at the single-cell level in IgG4-related disease (IgG4-RD). Identifying the cell populations and crosstalk between immune cells and non-immune cells will assist us in understanding the aetiology of IgG4-RD.MethodsWe performed single-cell RNA sequencing analysis on submandibular glands (SMGs) and PBMCs from patients with IgG4-RD and matched controls. Additionally, bulk RNA sequencing of PBMCs was used to construct the immune repertoire. Furthermore, multiplex immunofluorescence staining was performed to validate the transcriptomic results.ResultsWe identified three novel subsets of tissue-resident immune cells in the SMGs of patients with IgG4-RD.TOP2A_B cells andTOP2A_T cells had stemness signatures, and trajectory analysis showed thatTOP2A_B cells may differentiate into IgG4+plasma cells and thatTOP2A_T cells may differentiate into T follicular helper (Tfh) cells.ICOS_PD-1_B cells with Tfh-like characteristics appeared to be an intermediate state in the differentiation from B cells to IgG4+plasma cells. The cellular communication patterns within immune cells and between immune cells and non-immune cells were altered in IgG4-RD compared with controls. Consistently, infection-related pathways were shared in B cells and T cells from SMGs and PBMCs. Furthermore, immune clonotype analysis of PBMC samples showed the complementary determining region 3 amino acid CQQSYSTPYTF was expanded in patients with IgG4-RD.ConclusionOur data revealed the cellular and molecular changes at the single-cell resolution of IgG4-RD and provide valuable insights into the aetiology and novel therapeutic targets of the autoimmune disease.

Funder

National Natural Science Foundation of China grants

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3