Accuracy of a tool to prioritise patients awaiting elective surgery: an implementation report

Author:

Sharma VidehaORCID,Pritchard-Jones Rowan,Scott Sharon,Ainsworth John

Abstract

Study objectiveThe objective of this study was to evaluate the accuracy of a new elective surgery clinical decision support system, the ‘Patient Tacking List’ (PTL) tool (C2-Ai(c)) through receiver operating characteristic (ROC) analysis.MethodsWe constructed ROC curves based on risk predictions produced by the tool and compared these with actual patient outcomes on a retrospective cohort of patients awaiting elective surgery.ResultsA total of 11 837 patients were included across three National Health Service (NHS) hospitals in England. ROC analysis revealed an area under the curve of 0.95 (95% CI 0.92 to 0.98) for mortality and 0.8 (95% CI 0.78 to 0.82) for complications.DiscussionThe PTL tool was successfully integrated into existing data infrastructures, allowing real-time clinical decision support and a low barrier to implementation. ROC analysis demonstrated a high level of accuracy to predict the risk of mortality and complications after elective surgery. As such, it may be a valuable adjunct in prioritising patients on surgical waiting lists.Health systems, such as the NHS in England, must look at innovative methods to prioritise patients awaiting surgery in order to best use limited resources. Clinical decision support tools, such as the PTL tool, can improve prioritisation and thus positively impact clinical care and patient outcomes.ConclusionsThe high level of accuracy for predicating mortality and complications after elective surgery using the PTL tool indicates the potential for clinical decision support tools to help tackle rising waiting lists and improve surgical planning.

Publisher

BMJ

Subject

Health Information Management,Health Informatics,Computer Science Applications

Reference10 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3