Development of automated HIV case reporting system using national electronic medical record in Thailand

Author:

Yingyong Thitipong,Aungkulanon SuchunyaORCID,Saithong Wasun,Jantaramanee Supiya,Phokhasawad Kanjanakorn,Fellows Ian,Naiwatanakul Thananda,Mobnarin Jariya,Charoen Narong,Waikayee Paiboon,Northbrook Sanny Chen

Abstract

BackgroundAn electronic medical record (EMR) has the potential to improve completeness and reporting of notifiable diseases. We developed and assessed the validity of an HIV case detection algorithm and deployed the final algorithm in a national automated HIV case reporting system in Thailand.MethodsThe HIV case detection algorithms leveraged a combination of standard laboratory codes, prescriptions and International Classification of Diseases, 10th Revision diagnostic codes to identify potential cases. The initial algorithm was applied to the national EMR from 2014 to June 2020 to identify HIV-infected subjects to build the national HIV case reporting system (Epidemiological Intelligence Information System (EIIS)). A subset of potential positives identified by the initial algorithm were then validated and reviewed by infectious disease specialists. This review identified that a proportion of the false positives were due to pre-exposure prophylaxis/postexposure prophylaxis (PrEP/PEP) antiretrovirals, and so the algorithm was refined into a ‘Final Algorithm’ to address this.ResultsPositive predictive value of identifying HIV cases was 90% overall for the initial algorithm. Individuals misclassified as HIV-positive were HIV-negative patients with incorrect diagnostic codes, prescription records for PrEP, PEP and hepatitis B treatment. Additional revision to the algorithm included triple drug regimen to avoid further misclassification. The final HIV case detection algorithm was applied to national EMR between 2014 and 2020 with 449 088 HIV-infected subjects identified from 1496 hospitals. EIIS was designed by applying the final algorithm to automated extract HIV cases from the national EMR, analysing them and then transmitting the results to the Ministry of Public Health.ConclusionsEMR data can complement traditional provider-based and laboratory-based disease reports. An automated algorithm incorporating laboratory, diagnosis codes and prescriptions have the potential to improve completeness and timeliness of HIV reporting, leading to the implementation of a national HIV case reporting system.

Funder

U.S. President Emergency Plan for AIDS Relief

Publisher

BMJ

Subject

Health Information Management,Health Informatics,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Probabilistic Model of Patient Classification Using Bayesian Model;International Journal of Reliable and Quality E-Healthcare;2024-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3