The aqueous humour dynamics in primary angle closure disease: a computational study

Author:

Fu LinORCID,Liu XinyiORCID,Zhang Longqian,Lou Jiangtao,Zheng Xiaobo,Wang Xiaojue,Lin HaishuangORCID,Guo Liang,Wang Kezhao,Wang Yan,Kan Min,Liang YuanboORCID

Abstract

PurposeTo create a computational fluid dynamics (CFD) model of ocular anterior segment for primary angle closure diseases (PACD) and assess the aqueous humour (AH) dynamics in different angle closure ranges (ACRs).MethodsThe ocular anterior segment geometry was obtained from an optical coherence tomography image by SOLIDWORKS. Three different angle opening distance at 750 µm from the scleral spur (AOD750) values were established to mimic three widths of anterior chamber angle. The AH dynamics were modelled using the Navier-Stokes equation. The 3D CFD model of the ocular anterior segment was created in COMSOL Multiphysics. The major outcome was the maximum flow velocity (MFV) and pressure in the ocular anterior segment. An in vitro simulation model was used to validate the computational results of the pressure and ACRs.ResultsThe MFV and pressure both showed a non-linear association with ACR in the CFD models of PACD. The MFV and pressure started to elevate when ACR was larger than 180°, and increased dramatically when the ACR was larger than 270°. The in vitro experiment of the pressure changes was consistent with the CFD model. No significant differences of the MFV and pressure among the three AOD750 models.ConclusionsThe association among the ACR, MFV and pressure is an ascending curve in PACD, and ACR of 180° and 270° are two critical turning points. Our results are consistent with clinical phenomenon and may be used to provide better guidances for the clinical management of PACD in different stages.

Funder

the National Natural Science Foundation of China Youth Science Foundation Project

the Foundation of Wenzhou City Science & Technology Bureau

Zhejiang Provincial Medical and Health Science Technology Program

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3