COX-2-dependent and independent effects of COX-2 inhibitors and NSAIDs on proatherogenic changes in human monocytes/macrophages

Author:

Voloshyna IrynaORCID,Kasselman Lora J,Carsons Steven E,Littlefield Michael J,Gomolin Irving H,De Leon Joshua,Reiss Allison B

Abstract

It is the second decade of controversy regarding the cardiovascular effects of cyclo-oxygenase-2 (COX-2) inhibitors. At this time, celecoxib is the only available COX-2-specific inhibitor for treatment of pain and inflammation. Therefore, the present study was designed primarily to determine the impact of celecoxib on cholesterol handling (uptake via scavenger receptors and efflux from the cells) and foam cell formation in human THP-1 macrophages, followed by comparison to rofecoxib and other non-steroidal anti-inflammatory drugs (NSAIDs). THP-1 human macrophages and peripheral blood mononuclear cells were incubated with: celecoxib, rofecoxib, naproxen (at 5, 10, 25 µM) and acetaminophen (0.5 mM, 1 mM)±oxidized low-density lipoprotein (oxLDL, 25 µg/mL). Scavenger receptors: CD36, LOX-1, SR-A1, and CXCL16 and cholesterol efflux proteins: ATP-binding cassette transporter (ABC) A1 and G1, and 27-hydroxylase were detected. The adhesion of monocytes to cultured endothelial cells with/ without COX-2 inhibitors/NSAIDs was also analyzed. The presence of celecoxib and rofecoxib (at high concentrations) significantly decreased expression of 27-hydroxylase and ABCA1, interfering with normal cholesterol outflow from macrophages. Acetaminophen and the non-specific COX inhibitor naproxen had no significant effect on these proteins. Only celecoxib had a profound effect on the class B scavenger receptor CD36 and the class E receptor LOX1. We demonstrate that in contrast to celecoxib, rofecoxib and naproxen increased adhesive properties of monocytes to endothelial cells. This work might contribute to our understanding of multiple mechanisms underlying elevated cardiovascular risk upon the use of COX-2 inhibitors and uncover new possibilities to enhance the safety profile of existing COX-2 inhibitors.

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3