Identification and assessment of classification criteria attributes for systemic lupus erythematosus in a regional medical record data network

Author:

Forrest NoahORCID,Jackson Kathryn L,Tran Steven,Pacheco Jennifer A,Mitrovic Vesna,Furmanchuk A'lona,Kho Abel N,Ramsey-Goldman RosalindORCID,Walunas Theresa LORCID

Abstract

ObjectiveTo assess the application and utility of algorithms designed to detect features of SLE in electronic health record (EHR) data in a multisite, urban data network.MethodsUsing the Chicago Area Patient-Centered Outcomes Research Network (CAPriCORN), a Clinical Data Research Network (CDRN) containing data from multiple healthcare sites, we identified patients with at least one positively identified criterion from three SLE classification criteria sets developed by the American College of Rheumatology (ACR) in 1997, the Systemic Lupus International Collaborating Clinics (SLICC) in 2012, and the European Alliance of Associations for Rheumatology and the ACR in 2019 using EHR-based algorithms. To measure the algorithms’ performance in this data setting, we first evaluated whether the number of clinical encounters for SLE was associated with a greater quantity of positively identified criteria domains using Poisson regression. We next quantified the amount of SLE criteria identified at a single healthcare institution versus all sites to assess the amount of SLE-related information gained from implementing the algorithms in a CDRN.ResultsPatients with three or more SLE encounters were estimated to have documented 2.77 (2.73 to 2.80) times the number of positive SLE attributes from the 2012 SLICC criteria set than patients without an SLE encounter via Poisson regression. Patients with three or more SLE-related encounters and with documented care from multiple institutions were identified with more SLICC criteria domains when data were included from all CAPriCORN sites compared with a single site (p<0.05).ConclusionsThe positive association observed between amount of SLE-related clinical encounters and the number of criteria domains detected suggests that the algorithms used in this study can be used to help describe SLE features in this data environment. This work also demonstrates the benefit of aggregating data across healthcare institutions for patients with fragmented care.

Funder

National Human Genome Research Institute

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Patient-Centered Outcomes Research Institute

Chicago Area Patient Centered Outcomes Research Network

Publisher

BMJ

Subject

Rheumatology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3