Brain microstructural injury occurs in patients with RRMS despite ‘no evidence of disease activity’

Author:

Harel Asaff,Sperling Dylan,Petracca MariaORCID,Ntranos Achillefs,Katz-Sand Ilana,Krieger Stephen,Lublin Fred,Wang Zichen,Liu Yangbo,Inglese Matilde

Abstract

ObjectivesThe accuracy of ‘no evidence of disease activity’ (NEDA) in predicting long-term clinical outcome in patients with relapsing remitting multiple sclerosis (RRMS) is unproven, and there is growing evidence that NEDA does not rule out disease worsening. We used diffusion tensor imaging (DTI) to investigate whether ongoing brain microstructural injury occurs in patients with RRMS meeting NEDA criteria.MethodsWe performed a retrospective study to identify patients with RRMS visiting our centre over a 3-month period who had undergone prior longitudinal DTI evaluation at our facility spanning ≥2 years. Patients meeting NEDA criteria throughout the evaluation period were included in the NEDA group, and those not meeting NEDA criteria were included in an ‘evidence of disease activity’ (EDA) group. Fractional anisotropy (FA) and mean diffusivity (MD) maps were created, and annual rates of change were calculated.ResultsWe enrolled 85 patients, 39 meeting NEDA criteria. Both NEDA and EDA groups showed longitudinal DTI worsening. Yearly FA decrease was lower in the NEDA group (0.5%, p<0.0001) than in the EDA group (1.2%, p=0.003), while yearly MD increase was similar in both groups (0.8% for NEDA and EDA, both p<0.01). There was no statistical difference in deterioration within and outside of T2 lesions. DTI parameters correlated with disability scores and fatigue complaints.ConclusionsWhite matter microstructural deterioration occurs in patients with RRMS over short-term follow-up in patients with NEDA, providing further evidence of the limitations of conventional measures and arguing for DTI in monitoring of the disease process.

Funder

National Multiple Sclerosis Society

Publisher

BMJ

Subject

Psychiatry and Mental health,Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3