Establishment and validation of prognostic nomograms integrating histopathological features in patients with endocervical adenocarcinoma

Author:

Luo Rong-Zhen,Yang Xia,Zhang Shi-WenORCID,Liu Li-Li

Abstract

AimsTo develop and verify pathological models using pathological features basing on HE images to predict survival invasive endocervical adenocarcinoma (ECA) postoperatively.MethodsThere are 289 ECA patients were classified into training and validation cohort. A histological signature was produced in 191 patients and verified in the validation groups. Histological models combining the histological features were built, proving the incremental value of our model to the traditional staging system for individualised prognosis estimation.ResultsOur model included five chosen histological characteristics and was significantly related to overall survival (OS). Our model had AUC of 0.862 and 0.955, 0.891 and 0.801 in prognosticating 3-year and 5 year OS in the training and validation cohort, respectively. In training cohorts, our model had better performance for evaluation of OS (C-index: 0.832; 95% CI 0.751 to 0.913) than International Federation of Gynecology and Obstetrics (FIGO) staging system (C-index: 0.648; 95% CI 0.542 to 0.753) and treatment (C-index: 0.687; 95% CI 0.605 to 0.769), with advanced efficiency of the classification of survival outcomes. Furthermore, in both cohorts, a risk stratification system was built that was able to precisely stratify stage I and II ECA patients into high-risk and low-risk subpopulation with significantly different prognosis.ConclusionsA nomogram with five histological signatures had better performance in OS prediction compared with traditional staging systems in ECAs, which might enable a step forward to precision medicine.

Funder

Natural Science Foundation

National Natural Science Foundation of China

Publisher

BMJ

Subject

General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3