Cellular characterisation of magnetic resonance imaging bone oedema in rheumatoid arthritis; implications for pathogenesis of erosive disease

Author:

Dalbeth N,Smith T,Gray S,Doyle A,Antill P,Lobo M,Robinson E,King A,Cornish J,Shalley G,Gao A,McQueen F M

Abstract

Objectives:Magnetic resonance imaging (MRI) bone oedema is an important predictor of bone erosion in rheumatoid arthritis (RA). This study aimed to determine the cellular components of MRI bone oedema, and clarify the relationship between bone erosion and MRI bone oedema.Methods:Twenty-eight bones from 11 patients with RA undergoing orthopaedic surgery were analysed by quantitative and semi-quantitative immunohistochemistry. Pre-operative contrast-enhanced MRI scans were analysed for bone oedema.Results:The density of osteoclasts was higher in those samples with MRI bone oedema than those without MRI bone oedema (p = 0.01). Other cells identified within bone marrow included macrophages and plasma cells, and these were more numerous in samples with MRI bone oedema (p = 0.02 and 0.05 respectively). B cells were present in lower numbers, but B cell aggregates were identified in some samples with MRI bone oedema. There was a trend to increased RANKL expression in samples with MRI bone oedema (p = 0.09). Expression of RANKL correlated with the number of osteoclasts (r = 0.592, p = 0.004).Conclusions:The increased number of osteoclasts and RANKL expression in samples with MRI bone oedema supports the hypothesis that bone erosion in RA occurs through activation of local bone resorption mechanisms within subchondral bone as well as through synovial invasion into bone.

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3