Increased frequency of CD16+ monocytes and the presence of activated dendritic cells in salivary glands in primary Sjögren syndrome

Author:

Wildenberg M E,Welzen-Coppens J M C,van Helden-Meeuwsen C G,Bootsma H,Vissink A,van Rooijen N,van de Merwe J P,Drexhage H A,Versnel M A

Abstract

Objectives:In the salivary glands of patients with primary Sjögren Syndrome (pSjS) an accumulation of dendritic cells (DCs) is seen, which is thought to play a role in stimulating local inflammation. Aberrancies in subsets of monocytes, generally considered the blood precursors for DCs, may play a role in this accumulation of DCs. This study is aimed at determining the level of mature CD14lowCD16+ monocytes in pSjS and their contribution to the accumulation of DCs in pSjS.Methods:Levels of mature and immature monocytes in patients with pSjS (n = 19) and controls (n = 15) were analysed by flow cytometry. The reverse transmigration system was used for generation of DCs generated from monocyte subsets. The phenotype of DCs in pSjS salivary glands was analysed using immunohistochemistry. In vivo tracking of monocyte subsets was performed in a mouse model.Results:Increased levels of mature CD14lowCD16+ monocytes were found in patients with pSjS (mean (SD) 14.5 (5.5)% vs 11.4 (3.4)%). These cells showed normal expression of chemokine receptor and adhesion molecules. Mature monocytes partly developed into DC-lysosome-associated membrane glycoprotein (LAMP)+ (19.6 (7.5)%) and CD83+ (16 (9)%) DCs, markers also expressed by DCs in pSjS salivary glands. Monocyte tracking in the non-obese diabetic (NOD) mouse showed that the homologue population of mature mouse monocytes migrated to the salivary glands, and preferentially developed into CD11c+ DCs in vivo.Conclusions:Mature monocytes are increased in pSjS and patient and mouse data support a model where this mature monocyte subset migrates to the salivary glands and develops into DCs.

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3