Mesenchymal stem cells in rheumatoid synovium: enumeration and functional assessment in relation to synovial inflammation level

Author:

Jones E,Churchman S M,English A,Buch M H,Horner E A,Burgoyne C H,Reece R,Kinsey S,Emery P,McGonagle D,Ponchel F

Abstract

Objective:Achieving joint regeneration in rheumatoid arthritis (RA) represents a future challenge. Autologous synovial mesenchymal stem cells (MSCs) could be therapeutically exploited. However, the inflammatory milieu in the RA synovium could adversely affect endogenous MSC function. To test this hypothesis, the frequency and multipotency of RA synovial MSCs was evaluated in relation to existing synovial inflammation.Methods:Synovial inflammation was measured using the arthroscopic visual analogue score (VAS) and further validated using immunohistochemistry and flow cytometry. Highly proliferative clonogenic in vivo MSCs were enumerated following fluorescence-activated cell sorting and expansion for 20 population doublings. MSC multipotency was quantified following standard in vitro culture expansion and trilineage differentiation assays. Real-time PCR, flow cytometry and ELISA were used to evaluate pro- and anti-chondrogenic molecules in standard polyclonal synovial MSCs.Results:The arthroscopic VAS significantly correlated with synovial macrophage infiltration. In RA, synovial MSC chondrogenesis was inhibited in direct relation to VAS (r = −0.777, p<0.05) and reduced compared with control osteoarthritis (OA)-MSCs (p<0.05). In vivo, MSCs resided in the synovial fibroblastic/stromal fraction (CD45CD31) and were reduced in frequency in relation to VAS (r = −0.695, p<0.05). In RA-MSCs, CD44 levels correlated negatively with inflammation and positively with chondrogenesis (r = −0.830 and r = 0.865, respectively). Cytokine production and Sox9 expression was similar in RA-MSCs and OA-MSCs.Conclusions:There is a negative relationship between synovial MSC chondrogenic and clonogenic capacities and the magnitude of synovitis in RA. Effective suppression of joint inflammation is therefore necessary for the development of autologous MSC treatments aimed at cartilage regeneration in RA.

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3