Reducing workload in malignant melanoma sentinel node examination: a national study of pathology reports from 507 melanoma patients

Author:

Mellemgaard CarinaORCID,Christensen Ib Jarle,Salkus Giedrius,Wirenfeldt Staun Pia,Korsgaard Niels,Hein Lindahl Kim,Skaarup Larsen Mathilde,Klausen Siri,Lade-Keller Johanne

Abstract

AimsEven though extensive melanoma sentinel node (SN) pathology protocols increase metastasis detection, there is a need for balancing high detection rates with reasonable workload. A newly tested Danish protocol recommended examining nodes at six levels 150 µm apart (six-level model) and using SOX10 and Melan-A immunohistochemistry (IHC). We explored if a protocol examining 3 levels 300 µm apart (three-level model) combined with IHC would compromise metastasis detection. The study aim was to optimise the protocol to reduce workload without compromising detection rate.Methods8 months after protocol implementation, we reviewed the pathology reports of SNs from 507 melanoma patients nationwide, including 117 SN-positive patients. Each report was reviewed to determine histopathological features, including detection of metastasis, exact levels with metastasis, exact levels with metastasis >1 mm in diameter and IHC results.ResultsThe six-level model detected metastases in 23% of patients, whereas the three-level model would have detected metastases in 22% of patients. The three-level model would have missed a few small metastases (n=4), measuring <0.1 mm, 0.1 mm, 0.4 mm and 0.1 mm, respectively. The six-level model detected metastases >1 mm in 7% of patients. One of these metastases (measuring 1.1 mm) would have been detected by the three-level model, but not as >1 mm. SOX10 and Melan-A had equal sensitivity.ConclusionsReducing the number of levels examined to three levels 300 µm apart combined with IHC does not have significant impact on metastasis detection rate, and we will therefore recommend that the future melanoma SN guideline takes this into consideration to reduce overall workload.

Publisher

BMJ

Subject

General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3