Abstract
AimsCytogenetic abnormalities involving the IGH gene are seen in up to 55% of patients with multiple myeloma. Current testing is performed manually by fluorescence in situ hybridisation (FISH) on purified plasma cells. We aimed to assess whether an automated imaging flow cytometric method that uses immunophenotypic cell identification, and does not require cell isolation, can identify IGH abnormalities.MethodsAspirated bone marrow from 10 patients with multiple myeloma were studied. Plasma cells were identified by CD38 and CD138 coexpression and assessed with FISH probes for numerical or structural abnormalities of IGH. Thousands of cells were acquired on an imaging flow cytometer and numerical data and digital images were analysed.ResultsUp to 30 000 cells were acquired and IGH chromosomal abnormalities were detected in 5 of the 10 marrow samples. FISH signal patterns seen included fused IGH signals for IGH/FGFR3 and IGH/MYEOV, indicating t(4;14) and t(11;14), respectively. In addition, three IGH signals were identified, indicating trisomy 14 or translocation with an alternate chromosome. The lowest limit of detection of an IGH abnormality was in 0.05% of all cells.ConclusionsThis automated high-throughput immuno-flowFISH method was able to identify translocations and trisomy involving the IGH gene in plasma cells in multiple myeloma. Thousands of cells were analysed and without prior cell isolation. The inclusion of positive plasma cell identification based on immunophenotype led to a lowest detection level of 0.05% marrow cells. This imaging flow cytometric FISH method offers the prospect of increased precision of detection of critical genetic lesions involving IGH and other chromosomal defects in multiple myeloma.
Funder
Foundation for Australia-Japan Studies
Subject
General Medicine,Pathology and Forensic Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献