Abstract
Epidemics are influenced by both disease and societal factors and can grow exponentially over short time periods. Epidemic risk analysis can help in rapidly predicting potentially serious outcomes and flagging the need for rapid response. We developed a multifactorial risk analysis tool ‘EpiRisk’ to provide rapid insight into the potential severity of emerging epidemics by combining disease-related parameters and country-related risk parameters. An initial set of 18 disease and country-related risk parameters was reduced to 14 following qualitative discussions and the removal of highly correlated parameters by a correlation and clustering analysis. Of the remaining parameters, three risk levels were assigned ranging from low (1) moderate (2) and high (3). The total risk score for an outbreak of a given disease in a particular country is calculated by summing these 14 risk scores, and this sum is subsequently classified into one of four risk categories: low risk (<21), moderate risk (21–29), high risk (30–37) and extreme risk (>37). Total risk scores were calculated for nine retrospective outbreaks demonstrating an association with the actual impact of those outbreaks. We also evaluated to what extent the risk scores correlate with the number of cases and deaths in 61 additional outbreaks between 2002 and 2018, demonstrating positive associations with outbreak severity as measured by the number of deaths. Using EpiRisk, timely intervention can be implemented by predicting the risk of emerging outbreaks in real time, which may help government and public health professionals prevent catastrophic epidemic outcomes.
Funder
National Health and Medical Research Council
Subject
Public Health, Environmental and Occupational Health,Health Policy
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献