Abstract
Through the experiences gained by accelerating new vaccines for both Ebola virus infection and COVID-19 in a public health emergency, vaccine development has benefited from a ‘multiple shots on goal’ approach to new vaccine targets. This approach embraces simultaneous development of candidates with differing technologies, including, when feasible, vesicular stomatitis virus or adenovirus vectors, messenger RNA (mRNA), whole inactivated virus, nanoparticle and recombinant protein technologies, which led to multiple effective COVID-19 vaccines. The challenge of COVID-19 vaccine inequity, as COVID-19 spread globally, created a situation where cutting-edge mRNA technologies were preferentially supplied by multinational pharmaceutical companies to high-income countries while low and middle-income countries (LMICs) were pushed to the back of the queue and relied more heavily on adenoviral vector, inactivated virus and recombinant protein vaccines. To prevent this from occurring in future pandemics, it is essential to expand the scale-up capacity for both traditional and new vaccine technologies at individual or simultaneous hubs in LMICs. In parallel, a process of tech transfer of new technologies to LMIC producers needs to be facilitated and funded, while building LMIC national regulatory capacity, with the aim of several reaching ‘stringent regulator’ status. Access to doses is an essential start but is not sufficient, as healthcare infrastructure for vaccination and combating dangerous antivaccine programmes both require support. Finally, there is urgency to establish an international framework through a United Nations Pandemic Treaty to promote, support and harmonise a more robust, coordinated and effective global response.
Subject
Public Health, Environmental and Occupational Health,Health Policy
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献