Closing the gap on institutional delivery in northern India: a case study of how integrated machine learning approaches can enable precision public health

Author:

Huang Vincent S,Morris Kasey,Jain Mokshada,Ramesh Banadakoppa Manjappa,Kemp Hannah,Blanchard James,Isac Shajy,Sarkar Bidyut,Gothalwal Vikas,Namasivayam Vasanthakumar,Kumar Pankaj,Sgaier Sema KORCID

Abstract

IntroductionMeeting ambitious global health goals with limited resources requires a precision public health (PxPH) approach. Here we describe how integrating data collection optimisation, traditional analytics and causal artificial intelligence/machine learning (ML) can be used in a use case for increasing hospital deliveries of newborns in Uttar Pradesh, India.MethodsUsing a systematic behavioural framework we designed a large-scale survey on perceptual, interpersonal and structural drivers of women’s behaviour around childbirth (n=5613). Multivariate logistic regression identified factors associated with institutional delivery (ID). Causal ML determined the cause-and-effect ordering of these factors. Variance decomposition was used to parse sources of variation in delivery location, and a supervised learning algorithm was used to distinguish population subgroups.ResultsAmong the factors found associated with ID, the causal model showed that having a delivery plan (OR=6.1, 95% CI 6.0 to 6.3), believing the hospital is safer than home (OR=5.4, 95% CI 5.1 to 5.6) and awareness of financial incentives were direct causes of ID (OR=3.4, 95% CI 3.3 to 3.5). Distance to the hospital, borrowing delivery money and the primary decision-maker were not causal. Individual-level factors contributed 69% of variance in delivery location. The segmentation analysis showed four distinct subgroups differentiated by ID risk perception, parity and planning.ConclusionThese findings generate a holistic picture of the drivers and barriers to ID in Uttar Pradesh and suggest distinct intervention points for different women. This demonstrates data optimised to identify key behavioural drivers, coupled with traditional and ML analytics, can help design a PxPH approach that maximise the impact of limited resources.

Publisher

BMJ

Subject

Public Health, Environmental and Occupational Health,Health Policy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3