The effects of climatic and non-climatic factors on malaria mortality at different spatial scales in western Kenya, 2008–2019

Author:

Nyawanda Bryan O.,Khagayi SammyORCID,Obor David,Odhiambo Steve B.,Beloconi Anton,Otieno Nancy A.,Bigogo Godfrey,Kariuki Simon,Munga Stephen,Vounatsou PenelopeORCID

Abstract

BackgroundMalaria mortality is influenced by several factors including climatic and environmental factors, interventions, socioeconomic status (SES) and access to health systems. Here, we investigated the joint effects of climatic and non-climatic factors on under-five malaria mortality at different spatial scales using data from a Health and Demographic Surveillance System (HDSS) in western Kenya.MethodsWe fitted Bayesian spatiotemporal (zero-inflated) negative binomial models to monthly mortality data aggregated at the village scale and over the catchment areas of the health facilities within the HDSS, between 2008 and 2019. First order autoregressive temporal and conditional autoregressive spatial processes were included as random effects to account for temporal and spatial variation. Remotely sensed climatic and environmental variables, bed net use, SES, travel time to health facilities, proximity from water bodies/streams and altitude were included in the models to assess their association with malaria mortality.ResultsIncrease in rainfall (mortality rate ratio (MRR)=1.12, 95% Bayesian credible interval (BCI): 1.04–1.20), Normalized Difference Vegetation Index (MRR=1.16, 95% BCI: 1.06–1.28), crop cover (MRR=1.17, 95% BCI: 1.11–1.24) and travel time to the hospital (MRR=1.09, 95% BCI: 1.04–1.13) were associated with increased mortality, whereas increase in bed net use (MRR=0.84, 95% BCI: 0.70–1.00), distance to the nearest streams (MRR=0.89, 95% BCI: 0.83–0.96), SES (MRR=0.95, 95% BCI: 0.91–1.00) and altitude (MRR=0.86, 95% BCI: 0.81–0.90) were associated with lower mortality. The effects of travel time and SES were no longer significant when data was aggregated at the health facility catchment level.ConclusionDespite the relatively small size of the HDSS, there was spatial variation in malaria mortality that peaked every May–June. The rapid decline in malaria mortality was associated with bed nets, and finer spatial scale analysis identified additional important variables. Time and spatially targeted control interventions may be helpful, and fine spatial scales should be considered when data are available.

Funder

Swiss National Science Foundation

US. Centers for Disease Control and Prevention

Deutsche Forschungsgemeinschaft

Amt für Ausbildungsbeiträge Basel-Stadt

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3