Predictive value of anthropometric and biochemical indices in non-alcoholic fatty pancreas disease: a cross-sectional study

Author:

Xiao Yang,Wang Han,Han Lina,Huang Zhibin,Lyu Guorong,Li ShilinORCID

Abstract

ObjectivesTriglyceride (TG), triglyceride-glucose index (TyG), body mass index (BMI), TyG-BMI and triglyceride to high-density lipoprotein ratio (TG/HDL) have been reported to be reliable predictors of non-alcoholic fatty liver disease. However, there are few studies on potential predictors of non-alcoholic fatty pancreas disease (NAFPD). Our aim was to evaluate these and other parameters for predicting NAFPD.DesignCross-sectional study design.SettingPhysical examination centre of a tertiary hospital in China.ParticipantsThis study involved 1774 subjects who underwent physical examinations from January 2016 to September 2016.Primary and secondary outcome measuresFrom each subject, data were collected for 13 basic physical examination and blood biochemical parameters: age, weight, height, BMI, TyG, TyG-BMI, high-density lipoprotein (HDL), low-density lipoprotein, total cholesterol, TG, fasting plasma glucose, TG/HDL and uric acid. NAFPD was diagnosed by abdominal ultrasonography. A logistic regression model with a restricted cubic spline was used to evaluate the relationship between each parameter and NAFPD. The receiver operating characteristic (ROC) curve was used to calculate the area under the curve for each parameter.ResultsHDL was negatively correlated with NAFPD, height was almost uncorrelated with NAFPD and the remaining 11 parameters were positively correlated with NAFPD. ROC curve showed that weight-related parameters (weight, BMI and TyG-BMI) and TG-related parameters (TyG, TG and TG/HDL) had high predictive values for the identification of NAFPD. The combinations of multiple parameters had a better prediction effect than a single parameter. All the predictive effects did not differ by sex.ConclusionsWeight-related and TG-related parameters are good predictors of NAFPD in all populations. BMI showed the greatest predictive potential. Multiparameter combinations appear to be a good way to predict NAFPD.

Funder

Quanzhou High-level Talents Innovation and Entrepreneurship Project

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3