Diagnostic prediction models for bacterial meningitis in children with a suspected central nervous system infection: a systematic review and prospective validation study

Author:

Groeneveld Nina SORCID,Bijlsma Merijn W,van Zeggeren Ingeborg E,Staal Steven L,Tanck Michael W TORCID,van de Beek Diederik,Brouwer Matthijs C

Abstract

ObjectivesDiagnostic prediction models exist to assess the probability of bacterial meningitis (BM) in paediatric patients with suspected meningitis. To evaluate the diagnostic accuracy of these models in a broad population of children suspected of a central nervous system (CNS) infection, we performed external validation.MethodsWe performed a systematic literature review in Medline to identify articles on the development, refinement or validation of a prediction model for BM, and validated these models in a prospective cohort of children aged 0–18 years old suspected of a CNS infection.Primary and secondary outcome measuresWe calculated sensitivity, specificity, predictive values, the area under the receiver operating characteristic curve (AUC) and evaluated calibration of the models for diagnosis of BM.ResultsIn total, 23 prediction models were validated in a cohort of 450 patients suspected of a CNS infection included between 2012 and 2015. In 75 patients (17%), the final diagnosis was a CNS infection including 30 with BM (7%). AUCs ranged from 0.69 to 0.94 (median 0.83, interquartile range [IQR] 0.79–0.87) overall, from 0.74 to 0.96 (median 0.89, IQR 0.82–0.92) in children aged ≥28 days and from 0.58 to 0.91 (median 0.79, IQR 0.75–0.82) in neonates.ConclusionsPrediction models show good to excellent test characteristics for excluding BM in children and can be of help in the diagnostic workup of paediatric patients with a suspected CNS infection, but cannot replace a thorough history, physical examination and ancillary testing.

Funder

ZonMw

European Research Council

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3