Empowering Portable Age-Related Macular Degeneration Screening: Evaluation of a Deep Learning Algorithm for a Smartphone Fundus Camera

Author:

Savoy Florian Mickael,Rao Divya ParthasarathyORCID,Toh Jun Kai,Ong Bryan,Sivaraman Anand,Sharma Ashish,Das TaraprasadORCID

Abstract

ObjectivesDespite global research on early detection of age-related macular degeneration (AMD), not enough is being done for large-scale screening. Automated analysis of retinal images captured via smartphone presents a potential solution; however, to our knowledge, such an artificial intelligence (AI) system has not been evaluated. The study aimed to assess the performance of an AI algorithm in detecting referable AMD on images captured on a portable fundus camera.Design, settingA retrospective image database from the Age-Related Eye Disease Study (AREDS) and target device was used.ParticipantsThe algorithm was trained on two distinct data sets with macula-centric images: initially on 108,251 images (55% referable AMD) from AREDS and then fine-tuned on 1108 images (33% referable AMD) captured on Asian eyes using the target device. The model was designed to indicate the presence of referable AMD (intermediate and advanced AMD). Following the first training step, the test set consisted of 909 images (49% referable AMD). For the fine-tuning step, the test set consisted of 238 (34% referable AMD) images. The reference standard for the AREDS data set was fundus image grading by the central reading centre, and for the target device, it was consensus image grading by specialists.Outcome measuresArea under receiver operating curve (AUC), sensitivity and specificity of algorithm.ResultsBefore fine-tuning, the deep learning (DL) algorithm exhibited a test set (from AREDS) sensitivity of 93.48% (95% CI: 90.8% to 95.6%), specificity of 82.33% (95% CI: 78.6% to 85.7%) and AUC of 0.965 (95% CI:0.95 to 0.98). After fine-tuning, the DL algorithm displayed a test set (from the target device) sensitivity of 91.25% (95% CI: 82.8% to 96.4%), specificity of 84.18% (95% CI: 77.5% to 89.5%) and AUC 0.947 (95% CI: 0.911 to 0.982).ConclusionThe DL algorithm shows promising results in detecting referable AMD from a portable smartphone-based imaging system. This approach can potentially bring effective and affordable AMD screening to underserved areas.

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3