Barriers and facilitators to implementing imaging-based diagnostic artificial intelligence-assisted decision-making software in hospitals in China: a qualitative study using the updated Consolidated Framework for Implementation Research

Author:

Liao XiwenORCID,Yao Chen,Jin FeifeiORCID,Zhang Jun,Liu Larry

Abstract

ObjectivesTo identify the barriers and facilitators to the successful implementation of imaging-based diagnostic artificial intelligence (AI)-assisted decision-making software in China, using the updated Consolidated Framework for Implementation Research (CFIR) as a theoretical basis to develop strategies that promote effective implementation.DesignThis qualitative study involved semistructured interviews with key stakeholders from both clinical settings and industry. Interview guide development, coding, analysis and reporting of findings were thoroughly informed by the updated CFIR.SettingFour healthcare institutions in Beijing and Shanghai and two vendors of AI-assisted decision-making software for lung nodules detection and diabetic retinopathy screening were selected based on purposive sampling.ParticipantsA total of 23 healthcare practitioners, 6 hospital informatics specialists, 4 hospital administrators and 7 vendors of the selected AI-assisted decision-making software were included in the study.ResultsWithin the 5 CFIR domains, 10 constructs were identified as barriers, 8 as facilitators and 3 as both barriers and facilitators. Major barriers included unsatisfactory clinical performance (Innovation); lack of collaborative network between primary and tertiary hospitals, lack of information security measures and certification (outer setting); suboptimal data quality, misalignment between software functions and goals of healthcare institutions (inner setting); unmet clinical needs (individuals). Key facilitators were strong empirical evidence of effectiveness, improved clinical efficiency (innovation); national guidelines related to AI, deployment of AI software in peer hospitals (outer setting); integration of AI software into existing hospital systems (inner setting) and involvement of clinicians (implementation process).ConclusionsThe study findings contributed to the ongoing exploration of AI integration in healthcare from the perspective of China, emphasising the need for a comprehensive approach considering both innovation-specific factors and the broader organisational and contextual dynamics. As China and other developing countries continue to advance in adopting AI technologies, the derived insights could further inform healthcare practitioners, industry stakeholders and policy-makers, guiding policies and practices that promote the successful implementation of imaging-based diagnostic AI-assisted decision-making software in healthcare for optimal patient care.

Funder

MSD R&D (China) Co., Ltd.

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3