Identifying clinical features in primary care electronic health record studies: methods for codelist development

Author:

Watson JessicaORCID,Nicholson Brian D,Hamilton Willie,Price Sarah

Abstract

ObjectiveAnalysis of routinely collected electronic health record (EHR) data from primary care is reliant on the creation of codelists to define clinical features of interest. To improve scientific rigour, transparency and replicability, we describe and demonstrate a standardised reproducible methodology for clinical codelist development.DesignWe describe a three-stage process for developing clinical codelists. First, the clear definition a priori of the clinical feature of interest using reliable clinical resources. Second, development of a list of potential codes using statistical software to comprehensively search all available codes. Third, a modified Delphi process to reach consensus between primary care practitioners on the most relevant codes, including the generation of an ‘uncertainty’ variable to allow sensitivity analysis.SettingThese methods are illustrated by developing a codelist for shortness of breath in a primary care EHR sample, including modifiable syntax for commonly used statistical software.ParticipantsThe codelist was used to estimate the frequency of shortness of breath in a cohort of 28 216 patients aged over 18 years who received an incident diagnosis of lung cancer between 1 January 2000 and 30 November 2016 in the Clinical Practice Research Datalink (CPRD).ResultsOf 78 candidate codes, 29 were excluded as inappropriate. Complete agreement was reached for 44 (90%) of the remaining codes, with partial disagreement over 5 (10%). 13 091 episodes of shortness of breath were identified in the cohort of 28 216 patients. Sensitivity analysis demonstrates that codes with the greatest uncertainty tend to be rarely used in clinical practice.ConclusionsAlthough initially time consuming, using a rigorous and reproducible method for codelist generation ‘future-proofs’ findings and an auditable, modifiable syntax for codelist generation enables sharing and replication of EHR studies. Published codelists should be badged by quality and report the methods of codelist generation including: definitions and justifications associated with each codelist; the syntax or search method; the number of candidate codes identified; and the categorisation of codes after Delphi review.

Funder

Research Trainees Coordinating Centre

National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care South West Peninsula at the Royal Devon and Exeter NHS Foundation Trust

Publisher

BMJ

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3