High-resolution mapping of essential maternal and child health service coverage in Nigeria: a machine learning approach

Author:

Kawakatsu YoshitoORCID,Mosser Jonathan FORCID,Adolph Christopher,Baffoe Peter,Cheshi Fatima,Aiga Hirotsugu,Watkins D AORCID,Sherr Kenneth H

Abstract

BackgroundNational-level coverage estimates of maternal and child health (MCH) services mask district-level and community-level geographical inequities. The purpose of this study is to estimate grid-level coverage of essential MCH services in Nigeria using machine learning techniques.MethodsEssential MCH services in this study included antenatal care, facility-based delivery, childhood vaccinations and treatments of childhood illnesses. We estimated generalised additive models (GAMs) and gradient boosting regressions (GB) for each essential MCH service using data from five national representative cross-sectional surveys in Nigeria from 2003 to 2018 and geospatial socioeconomic, environmental and physical characteristics. Using the best-performed model for each service, we map predicted coverage at 1 km2and 5 km2spatial resolutions in urban and rural areas, respectively.ResultsGAMs consistently outperformed GB models across a range of essential MCH services, demonstrating low systematic prediction errors. High-resolution maps revealed stark geographic disparities in MCH service coverage, especially between rural and urban areas and among different states and service types. Temporal trends indicated an overall increase in MCH service coverage from 2003 to 2018, although with variations by service type and location. Priority areas with lower coverage of both maternal and vaccination services were identified, mostly located in the northern parts of Nigeria.ConclusionHigh-resolution spatial estimates can guide geographic prioritisation and help develop better strategies for implementation plans, allowing limited resources to be targeted to areas with lower coverage of essential MCH services.

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3