Geography versus sociodemographics as predictors of changes in daily mobility across the USA during the COVID-19 pandemic: a two-stage regression analysis across 26 metropolitan areas

Author:

Schaber KathrynORCID,Arambepola Rohan,Schluth Catherine,Labrique Alain B,Mehta Shruti H,Solomon Sunil S,Cummings Derek A T,Wesolowski Amy

Abstract

ObjectiveWe investigated whether a zip code’s location or demographics are most predictive of changes in daily mobility throughout the course of the COVID-19 pandemic.DesignWe used a population-level study to examine the predictability of daily mobility during the COVID-19 pandemic using a two-stage regression approach, where generalised additive models (GAM) predicted mobility trends over time at a large spatial level, then the residuals were used to determine which factors (location, zip code-level features or number of non-pharmaceutical interventions (NPIs) in place) best predict the difference between a zip code’s measured mobility and the average trend on a given date.SettingWe analyse zip code-level mobile phone records from 26 metropolitan areas in the USA on 15 March–31 September 2020, relative to October 2020.ResultsWhile relative mobility had a general trend, a zip code’s city-level location significantly helped to predict its daily mobility patterns. This effect was time-dependent, with a city’s deviation from general mobility trends differing in both direction and magnitude throughout the course of 2020. The characteristics of a zip code further increased predictive power, with the densest zip codes closest to a city centre tended to have the largest decrease in mobility. However, the effect on mobility change varied by city and became less important over the course of the pandemic.ConclusionsThe location and characteristics of a zip code are important for determining changes in daily mobility patterns throughout the course of the COVID-19 pandemic. These results can determine the efficacy of NPI implementation on multiple spatial scales and inform policy makers on whether certain NPIs should be implemented or lifted during the ongoing COVID-19 pandemic and when preparing for future public health emergencies.

Funder

National Institutes of Health

National Institute of Allergy and Infectious Diseases

Burroughs Welcome Fund

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3