Statistical tools used for analyses of frequent users of emergency department: a scoping review

Author:

Chiu YohannORCID,Racine-Hemmings François,Dufour Isabelle,Vanasse Alain,Chouinard Maud-Christine,Bisson Mathieu,Hudon Catherine

Abstract

ObjectiveFrequent users represent a small proportion of emergency department users, but they account for a disproportionately large number of visits. Their use of emergency departments is often considered suboptimal. It would be more efficient to identify and treat those patients earlier in their health problem trajectory. It is therefore essential to describe their characteristics and to predict their emergency department use. In order to do so, adequate statistical tools are needed. The objective of this study was to determine the statistical tools used in identifying variables associated with frequent use or predicting the risk of becoming a frequent user.MethodsWe performed a scoping review following an established 5-stage methodological framework. We searched PubMed, Scopus and CINAHL databases in February 2019 using search strategies defined with the help of an information specialist. Out of 4534 potential abstracts, we selected 114 articles based on defined criteria and presented in a content analysis.ResultsWe identified four classes of statistical tools. Regression models were found to be the most common practice, followed by hypothesis testing. The logistic regression was found to be the most used statistical tool, followed by χ2 test and t-test of associations between variables. Other tools were marginally used.ConclusionsThis scoping review lists common statistical tools used for analysing frequent users in emergency departments. It highlights the fact that some are well established while others are much less so. More research is needed to apply appropriate techniques to health data or to diversify statistical point of views.

Funder

Centre de recherche du Centre hospitalier universitaire de Sherbrooke

Fonds de Recherche du Québec - Santé

Publisher

BMJ

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3