Machine learning for prediction of sudden cardiac death in heart failure patients with low left ventricular ejection fraction: study protocol for a retroprospective multicentre registry in China

Author:

Meng Fanqi,Zhang Zhihua,Hou Xiaofeng,Qian Zhiyong,Wang Yao,Chen Yanhong,Wang Yilian,Zhou Ye,Chen Zhen,Zhang Xiwen,Yang Jing,Zhang Jinlong,Guo Jianghong,Li Kebei,Chen Lu,Zhuang Ruijuan,Jiang Hai,Zhou Weihua,Tang ShaowenORCID,Wei Yongyue,Zou Jiangang

Abstract

IntroductionLeft ventricular ejection fraction (LVEF) ≤35%, as current significant implantable cardioverter-defibrillator (ICD) indication for primary prevention of sudden cardiac death (SCD) in heart failure (HF) patients, has been widely recognised to be inefficient. Improvement of patient selection for low LVEF (≤35%) is needed to optimise deployment of ICD. Most of the existing prediction models are not appropriate to identify ICD candidates at high risk of SCD in HF patients with low LVEF. Compared with traditional statistical analysis, machine learning (ML) can employ computer algorithms to identify patterns in large datasets, analyse rules automatically and build both linear and non-linear models in order to make data-driven predictions. This study is aimed to develop and validate new models using ML to improve the prediction of SCD in HF patients with low LVEF.Methods and analysisWe will conduct a retroprospective, multicentre, observational registry of Chinese HF patients with low LVEF. The HF patients with LVEF ≤35% after optimised medication at least 3 months will be enrolled in this study. The primary endpoints are all-cause death and SCD. The secondary endpoints are malignant arrhythmia, sudden cardiac arrest, cardiopulmonary resuscitation and rehospitalisation due to HF. The baseline demographic, clinical, biological, electrophysiological, social and psychological variables will be collected. Both ML and traditional multivariable Cox proportional hazards regression models will be developed and compared in the prediction of SCD. Moreover, the ML model will be validated in a prospective study.Ethics and disseminationThe study protocol has been approved by the Ethics Committee of the First Affiliated Hospital of Nanjing Medical University (2017-SR-06). All results of this study will be published in international peer-reviewed journals and presented at relevant conferences.Trial registration numberChiCTR-POC-17011842; Pre-results.

Funder

New Faculty startup grant from the University of Southern Mississippi

Jiangsu Province’s Key Medical Center

AHA grant

Jiangsu Science and Technology Department

National Natural Science Foundation of China

Publisher

BMJ

Subject

General Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3