Diagnostic models predicting paediatric viral acute respiratory infections: a systematic review

Author:

Rankin Danielle AORCID,Peetluk Lauren S,Deppen Stephen,Slaughter James Christopher,Katz Sophie,Halasa Natasha B,Khankari Nikhil K

Abstract

ObjectivesTo systematically review and evaluate diagnostic models used to predict viral acute respiratory infections (ARIs) in children.DesignSystematic review.Data sourcesPubMed and Embase were searched from 1 January 1975 to 3 February 2022.Eligibility criteriaWe included diagnostic models predicting viral ARIs in children (<18 years) who sought medical attention from a healthcare setting and were written in English. Prediction model studies specific to SARS-CoV-2, COVID-19 or multisystem inflammatory syndrome in children were excluded.Data extraction and synthesisStudy screening, data extraction and quality assessment were performed by two independent reviewers. Study characteristics, including population, methods and results, were extracted and evaluated for bias and applicability using the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies and PROBAST (Prediction model Risk Of Bias Assessment Tool).ResultsOf 7049 unique studies screened, 196 underwent full text review and 18 were included. The most common outcome was viral-specific influenza (n=7; 58%). Internal validation was performed in 8 studies (44%), 10 studies (56%) reported discrimination measures, 4 studies (22%) reported calibration measures and none performed external validation. According to PROBAST, a high risk of bias was identified in the analytic aspects in all studies. However, the existing studies had minimal bias concerns related to the study populations, inclusion and modelling of predictors, and outcome ascertainment.ConclusionsDiagnostic prediction can aid clinicians in aetiological diagnoses of viral ARIs. External validation should be performed on rigorously internally validated models with populations intended for model application.PROSPERO registration numberCRD42022308917.

Funder

National Institutes of Health

National Center for Advancing Translational Sciences

Publisher

BMJ

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3