Diverse experts’ perspectives on ethical issues of using machine learning to predict HIV/AIDS risk in sub-Saharan Africa: a modified Delphi study

Author:

Nichol Ariadne AORCID,Bendavid Eran,Mutenherwa Farirai,Patel Chirag,Cho Mildred K

Abstract

ObjectiveTo better understand diverse experts’ views about the ethical implications of ongoing research funded by the National Institutes of Health that uses machine learning to predict HIV/AIDS risk in sub-Saharan Africa (SSA) based on publicly available Demographic and Health Surveys data.DesignThree rounds of semi-structured surveys in an online expert panel using a modified Delphi approach.ParticipantsExperts in informatics, African public health and HIV/AIDS and bioethics were invited to participate.MeasuresPerceived importance of or agreement about relevance of ethical issues on 5-point unipolar Likert scales. Qualitative data analysis identified emergent themes related to ethical issues and development of an ethical framework and recommendations for open-ended questions.ResultsOf the 35 invited experts, 22 participated in the online expert panel (63%). Emergent themes were the inclusion of African researchers in all aspects of study design, analysis and dissemination to identify and address local contextual issues, as well as engagement of communities. Experts focused on engagement with health and science professionals to address risks, benefits and communication of findings. Respondents prioritised the mitigation of stigma to research participants but recognised trade-offs between privacy and the need to disseminate findings to realise public health benefits. Strategies for responsible communication of results were suggested, including careful word choice in presentation of results and limited dissemination to need-to-know stakeholders such as public health planners.ConclusionExperts identified ethical issues specific to the African context and to research on sensitive, publicly available data and strategies for addressing these issues. These findings can be used to inform an ethical implementation framework with research stage-specific recommendations on how to use publicly available data for machine learning-based predictive analytics to predict HIV/AIDS risk in SSA.

Funder

National Institutes of Health

Publisher

BMJ

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3