Detection of subclinical rheumatic heart disease in children using a deep learning algorithm on digital stethoscope: a study protocol

Author:

Ali FatimaORCID,Hasan Babar,Ahmad Huzaifa,Hoodbhoy ZahraORCID,Bhuriwala Zainab,Hanif Muhammad,Ansari Shahab U,Chowdhury Devyani

Abstract

IntroductionRheumatic heart diseases (RHDs) contribute significant morbidity and mortality globally. To reduce the burden of RHD, timely initiation of secondary prophylaxis is important. The objectives of this study are to determine the frequency of subclinical RHD and to train a deep learning (DL) algorithm using waveform data from the digital auscultatory stethoscope (DAS) in predicting subclinical RHD.Methods and analysisWe aim to recruit 1700 children from a group of schools serving the underprivileged over a 12-month period in Karachi (Pakistan). All consenting students within the age of 5–15 years with no underlying congenital heart disease will be eligible for the study. We will gather information regarding sociodemographics, anthropometric data, history of symptoms or diagnosis of rheumatic fever, phonocardiogram (PCG) and electrocardiography (ECG) data obtained from DAS. Handheld echocardiogram will be performed on each study participant to assess the presence of a mitral regurgitation (MR) jet (>1.5 cm), or the presence of aortic regurgitation (AR) in any view. If any of these findings are present, a confirmatory standard echocardiogram using the World Heart Federation (WHF) will be performed to confirm the diagnosis of subclinical RHD. The auscultatory data from digital stethoscope will be used to train the deep neural network for the automatic identification of patients with subclinical RHD. The proposed neural network will be trained in a supervised manner using labels from standard echocardiogram of the participants. Once trained, the neural network will be able to automatically classify the DAS data in one of the three major categories—patient with definite RHD, patient with borderline RHD and normal subject. The significance of the results will be confirmed by standard statistical methods for hypothesis testing.Ethics and disseminationEthics approval has been taken from the Aga Khan University, Pakistan. Findings will be disseminated through scientific publications and to collaborators.Article focusThis study focuses on determining the frequency of subclinical RHD in school-going children in Karachi, Pakistan and developing a DL algorithm to screen for this condition using a digital stethoscope.

Funder

This study was funded by the Aga Khan University, University Research Council grant

Publisher

BMJ

Subject

General Medicine

Reference28 articles.

1. Global, Regional, and National Burden of Rheumatic Heart Disease, 1990–2015

2. Sika-Paotonu D , Beaton A , Raghu A , et al . Acute Rheumatic Fever and Rheumatic Heart Disease. In: Ferretti JJ , Stevens DL , Fischetti VA , eds. Streptococcus pyogenes : Basic Biology to Clinical Manifestations. Oklahoma City (OK: University of Oklahoma Health Sciences Center, 2016.

3. The global burden of group A streptococcal diseases

4. Fever WHOSGoR, Rheumatic Heart D, World Health O . Rheumatic fever and rheumatic heart disease : report of a WHO expert consultation, Geneva, 20 October - 1 November 2001. Geneva World Health Organization. 2004.

5. Status of rheumatic heart disease in rural Pakistan

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3