Abstract
ObjectivesLung ultrasound (LUS) is a portable, low-cost respiratory imaging tool but is challenged by user dependence and lack of diagnostic specificity. It is unknown whether the advantages of LUS implementation could be paired with deep learning (DL) techniques to match or exceed human-level, diagnostic specificity among similar appearing, pathological LUS images.DesignA convolutional neural network (CNN) was trained on LUS images with B lines of different aetiologies. CNN diagnostic performance, as validated using a 10% data holdback set, was compared with surveyed LUS-competent physicians.SettingTwo tertiary Canadian hospitals.Participants612 LUS videos (121 381 frames) of B lines from 243 distinct patients with either (1) COVID-19 (COVID), non-COVID acute respiratory distress syndrome (NCOVID) or (3) hydrostatic pulmonary edema (HPE).ResultsThe trained CNN performance on the independent dataset showed an ability to discriminate between COVID (area under the receiver operating characteristic curve (AUC) 1.0), NCOVID (AUC 0.934) and HPE (AUC 1.0) pathologies. This was significantly better than physician ability (AUCs of 0.697, 0.704, 0.967 for the COVID, NCOVID and HPE classes, respectively), p<0.01.ConclusionsA DL model can distinguish similar appearing LUS pathology, including COVID-19, that cannot be distinguished by humans. The performance gap between humans and the model suggests that subvisible biomarkers within ultrasound images could exist and multicentre research is merited.
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献